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Networks Science Overview
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The Poisson Random Graph
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The Next Step

We have seen that Gn,p isn’t a realistic model for real world
networks:

x Poisson Degree Distribution 6= Power Law

x Low Transitivity and Clustering

x Degrees uncorrelated

Need for new models, that closely match real world network
properties:

Configuration Model

Preferential Attachment

Exponential Random Graphs
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The Next Step

Main themes utilized by scientists to model networks:

Randomness

Feedback Mechanisms

Simple rules

We aim to provide models that:

Capture Qualitative Characteristics

Provide Natural Generative and Evolution Mechanisms.

Analytically Tractable.
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Network Metrics
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Concise Qualitative Description
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Similarities and Differences
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Evaluate our Models
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Importance of Individual Nodes
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Important Metrics

Degree Distribution

Clustering Coefficient

Mean Geodesic Distance

Degree Correlation Coefficient
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Degree Distribution

The simplest metric we can imagine is the degree of a node, the
number of edges connected to it.

Despite its simplicity it is a very
successful metric:

o Indicates the importance of individual
nodes.

o Describes the pattern of connections on
an aggregate level (intuitive picture of
the network).

o Analytically tractable.

Most real world networks exhibit a
power-law degree distribution :

pk = C · k−a
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Transitivity

Given that x and y are two friends of z, what is the probability
that x and y are friends?

Clustering Coefficient quantifies the degree of
transitivity:

C =
(number of triangles × 3)

(number of connected triples

If C = 0 we have no closed triangles (e.g tree,
lattice), whereas if C = 1 we have only cliques.
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Closeness Centrality

How close is a given vertex to any other vertex in the network on
average?

Ci =
1

`i
=

n∑
j di ,j

where `i is the mean geodesic distance of node i . This metric is closely related
to the study of the “small world phenomenon” and its success lies in:

Main phenomena rely on shortest paths(transportation, cascades,
epidemics)

Provides clear “functional” ordering of the centrality of nodes.
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Assortative Mixing

In many real world networks, especially in social networks, there is
a tendency for people to be friends with people with similar
characteristics (nationality, age, job, hobby). This phenomenon is
called homophily. We call such networks assortative.

Figure: Friendship relations in “Countryside High School” by race and gender. James Moody, Race, school
integration, and friendship segregation in America, American Journal of Sociology 107
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Degree Correlation Coefficient

We would like to have a meaningful measure of the assortativity of a
network. Assume we have for each node i a scalar characteristic xi , then
a natural metric would be to consider the covariance of xi and xj over all
edges:

cov(xi , xj) =

∑
ij Aij(xi − µ)(xj − µ)∑

ij Aij
=

1

2m

∑
ij

(
Aij −

kikj

2m

)
xixj

where µ = 1
2m

∑
i kixi is the mean value of xi at the end of an edge.

We normalize the above measure by dividing with the value that a

perfectly mixed network would have, 1
2m

∑
ij

(
kiδij −

ki kj
2m

)
xixj . So, if we

want to find the correlation between degrees we set xi = ki and obtain
the Degree Correlation Coefficient:

r =

∑
ij(Aij −

ki kj
2m

)kikj∑
ij

(
kiδij −

ki kj
2m

)
kikj
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Assortative vs. Disassortative

Figure: a, In assortative networks high degree nodes tend to stick together so we expect a structure with a
dense core and more sparse peripheries. b, In disassortative networks, by contrast, well-connected nodes join to a
much larger number of less-well-connected nodes creating star-like structure. Figure from Networks: Teasing out
the missing links, Sid Redner, Nature 453
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Structure of the Internet

The component structure of directed networks is more complicated than
for undirected ones. We have weakly and strongly connected
components. The equivalent of the giant component in undirected
networks is the Giant Strongly Connected Component and it is
associated with an in- and out-component.

In directed networks there is an in- and out-degree distribution as well. It
has been found that both distributions follow a power law with
exponents 2.1 and 2.7 respectively.
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Statistics of Real World Networks

In general we can observe that many real world networks exhibit:

power law degree distributions,

small world phenomenon,

clustering and degree correlation

assortativity

A accurate network model should incorporate all of these phenomena. A first

step would be to have a model that realizes any degree distribution.
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Configuration Model
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Configuration Model

The Configuration Model is actually a model of a random graph
with a given degree sequence instead of distribution. In this model
we are given the degree ki of each vertex. This model is analogous
to Gn,m as the number of edges is fixed.

For every vertex with degree ki , we
create ki open ended edges (stubs).

The graph is created by iteratively
selecting uniformly at random two
“stubs” and connecting them.

In other words we select a random
matching.
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Configuration Model
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Self-Edges, Multi-edges and other Evils

There are a number of issues with the configuration model that
gives us trouble:

The network may contain self-edges or multi-edges or both.
However, the density of self edges tends to zero in the
limit.

Unfortunately, not all networks with the given degree
distribution appear with the same probability as due to
self/multi-edges some networks appear more often.
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Edge Probability

The probability pij of the occurrence of an edge between two
specific vertices i and j .

pij =
ki · kj

2m − 1
=

ki · kj
2m

Once we have an edge between vertices i and j then the
probability of a second edge is (ki − 1)(kj − 1)/2m. The
expected number of multi-edges is:

1

2

∑
ij

kikj
2m
·

(ki − 1)(kj − 1)

2m
=

1

2

[
〈k2〉 − 〈k〉
〈k〉

]2
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Excess Degree

Consider a configuration model with degree distribution pk .
What is the probability that if we choose a vertex and random
and follow one of it’s edges we find a vertex with degree k?

k

2m
× npk =

kpk

〈k〉

We will be interested in what follows with the number of
edges attached to a vertex other than the edge we arrived
along. This number is called the excess degree. We can
calculate the fraction of vertices with excess degree k simply
by noting that these vertices must have degree k + 1, hence:

qk =
(k + 1)pk+1

〈k〉
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Your Friends are more Popular than you

Consider a randomly chosen vertex and the average degree 〈d〉 of
its neighbours:

〈d〉 =
∑
k

k
kpk

〈k〉
=
〈k2〉
〈k〉

> 〈k〉

If we were modelling a friendship network then that would
mean that on average “your friends have more friends than
you do”. Actually , if one performs these calculations on real
networks the result still holds.

The reason for this counter-intuitive fact is that a vertex of
degree k will be present in k averages. This means that high
degree vertices are over-represented and it is this bias that
pushes the value up.
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Clustering Coefficient

Recall that the Clustering Coefficient is the average probability
that two neighbours of a vertex are neighbours themselves.

Consider a vertex v with two neighbours i and j with excess
degrees ki and kj . They are connected with probability
kikj/2m, and if we sum over all the possible degrees we get:

C =
∞∑

ki ,kj=0

qki qkj

kikj
2m

=
1

2m

[∑
k=0

kqk

]2

=
1

n

[〈k2〉 − 〈k〉]2

〈k〉3

This expression decreases as n−1 and so vanishes in the limit
of large n like in the Poisson Random Graph. However, for
some distributions the second moment 〈k2〉 diverges, so we
find surprisingly large values of C for the configuration model.
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Generating Functions

if X is a discrete random variable taking values in the
non-negative integers {0, 1, . . .} then the
probability-generating function of X is defined as:

g(z) = E
(

zX
)

=
∞∑
k=0

pkzk = p0 + p1z + p2z2 . . .

where pk is the probability mass function of X.

The generating function encapsulates all of the information
about the probability distribution in a single function, since:

pk =
1

k!

dkg(0)

dzk

〈km〉 =

[(
z

d

dz

)m

g(z)

]
z=1
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Powers of Generating Functions

Consider a distribution pk and the corresponding generating function
g(z). Suppose, we have m integers which are independently drawn from
this distribution. Let πs be the probability that the integers add up to s,
then:

πs =
∞∑

k1=0

· · ·
∞∑

km=0

δ(s,
∑
i

ki )
∏

pki

We want to calculate the generating function h(z) of the sum of those
integers, which in this case are degrees:

h(z) =
∞∑
s=0

πsz
s =

∞∑
s=0

z s

 ∞∑
k1=0

· · ·
∞∑

km=0

δ(s,
∑
i

ki )
∏

pki


=

∞∑
k1=0

· · ·
∞∑

km=0

∏
pki z

ki =

[
∞∑
k=0

pkzk

]m
= [g(z)]m
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Generating Functions for Degree Distributions

In order to further study the properties of the Configuration
Model we will need the generating functions of the degree
distribution and the excess degree distribution, which are
respectively:

g0(z) =
∞∑
k=0

pkzk , g1(z) =
∞∑
k=0

qkzk

The above generating functions are not really independent,
since the excess degree distribution is defined in terms of the
ordinary degree distribution:

g1(z) =
1

〈k〉

∞∑
k=0

(k + 1)pk+1zk =
1

〈k〉
∑
k=0

kpkzk−1 =
1

〈k〉
dg0

dz
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Number of Second Neighbours

To understand the component structure of the Configuration model, we will
need to calculate the distribution of number of second neighbours of a
randomly chosen vertex p(2)(k) =

∑∞
m=0 pmP(2)(k|m), where P(2)(k|m) is the

probability that the sum of second neighbours of a vertex are k given that he
has m first neighbours.

We can write the generating function for
the number of second neighbours:

g (2)(z) =
∞∑
k=0

(
∞∑
m=0

pmP(2)(k|m)

)
zk

=
∞∑
m=0

pm

∞∑
k=0

P(2)(k|m)zk

=
∞∑
m=0

pm[g1(z)]m

= g0(g1(z))
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Neighbours at distance d

Similarly, we can show that the number of neighbours at any
(small) distance d has generating function:

g (d)(z) =
∞∑

m=0

p
(d−1)
m [g1(z)]m = g (d−1)(g1(z))

We can use this equation to calculate the average number cd
of neighbours at distance d , which for any distribution is

given by dg (d)

dz for z = 1:

cd = g (d−1)′(1)g
′
1(1) = cd−1g

′
1(1)

Since c1 = g
′
0(1) = 〈k〉 and that c2 = g

′
0(1)g

′
1(1), we get:

g
′
1(1) =

〈k2〉 − 〈k〉
〈k〉

=
c2

c1
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Giant Component

If we solve the previous recurrence we get that the mean number of nodes
at distance d is:

cd =

(
c2

c1

)d−1

c1

That means that once we know c1 and c2, we know everything. The
average number of nodes at distance d either grows or falls exponentially,
depending on the ratio c2/c1. As a consequence, we have the condition
for the appearance of the giant component:

c2 > c1 ⇔ 〈k2〉 − 2〈k〉 > 0⇔
∑
i

ki (ki − 2) > 0

Observe that the condition implies that nodes with degree 0 and 2 don’t
matter for the existence of the giant component. We must note that the
above reasoning is not exact, as there are cycles and multi-edges.
However, the result holds and was shown first in 1995 by Molloy and
Reed by using entirely different techniques.



Overview Network Metrics Configuration Model Preferential Attachment Exponential Random Graphs Discussion

Molloy and Reed ’95

Explore the graph by BFS process. The probability that we pick a vertex of
degree i to explore is proportional to its degree. The expected increase is
roughly:

Q(D) =
∑
i≥1

i(i− 2)di(n)

If Q(D) < 0 the BFS process will die out. Whereas, if Q(D) > 0 then the
component might grow quite large.

Principle of Deferred Decisions

“De-dimensionalize” by projecting the
process on a unit dimensional Random
Walk.

Use coupling to deal with irregularities

Concentration results by employing
Method of Bounding Differences and
Branching Processes Techniques
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The Diameter

Fernholz and Ramachandran in 2007 proved that if there is a giant component
then the longest distance in the graph is:

D = c · lnn = (2c2 + c1)lnn

In their proof they considered a BFS procedure restricted only on the 2-core
of the graph and managed to trace the rate of neighbourhood expansion. They
showed that the longest path would consist of a path form a vertex s to the
2−core of length c2lnn, a path in the 2−core of length c1lnn and a path from
the 2−core to the other vertex t of length c2lnn.
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Other Results

[Gkantsidis, Mihail, Saberi ’03]
Congestion of routing is O(n · log(n))(expanders) for power law graphs.

[Frieze, Krivevelich, Smyth ’06]
The Chromatic Number is Θ( d

logd
) where d is the average degree. For

some family of distributions(e.g. power laws and exponential distribution).

[Van der Hoefstadt+coauthors’04’05’08]

Studied extensively diameter and typical distances for power law

distributions x−α.
o (α > 2) Θ(log(N)).
o (2 < α < 3) Θ(log(N)) if min deg. ≥ 3 then O(log(log(N))).

o (1 < α < 2) Constant.

[Cooper, Frieze, Krivevelich ’10]
Hamiltonicity for CM when power laws or exponential distribution.

[Bohman, Picollelli ’11]
SIR epidemics solved by method of differential equations[Wormald].
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Networks with Transitivity

The idea of the Configuration Model can be generalized further and include
more complicated features. The idea is to specify the number of other
subgraphs as well, and then consider “hyperedges” by selecting the vertices
that will participate to the subgraph. We present here a model from Random
Graphs with Clustering by M.E.J. Newman, 2009:

In this model we specify both the number of
edges and the number of triangles. Let ti and si
be the number of triangles and single edges that
vertex i participates. We define the joint degree
distribution pst with generating function:

gp(x , y) =
∞∑

s,t=0

pstx
sy t

We can think of each vertex having a number of
“stubs” and “corners”. The network is created by
selecting a random matching independently for
stubs and corners.
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Networks with Transitivity

If we know the joint distribution gp(x , y), the distribution for the total
degree distribution can be found easily:

f (z) =
∞∑
k=0

pkzk =
∞∑
k=0

∞∑
s,t=0

ps,tz
s+2t = gp(z , z2)

We can use these generating functions to calculate the number of
triangles and the number of connected triples:

3N4 = n
∑
st

tpst = n

(
∂gp

∂y

)
x=y=1

N3 = n
∑
k

(
k

2

)
pk =

1

2
n

(
∂2f

∂z2

)
z=1

Thus, we wil always have a non zero value for the clustering coefficient
in the limit of large n:

C =
3N4
N3

= 2

(
∂gp

∂y
/
∂2f

∂z2

)
x=y=z=1
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Configuration Model Variant

Given the similarity of the Configuration Model to Gn,m, it is natural to
assume if there is also a Gn,p equivalent for this case as well. We can
define a similar model by selecting a parameter ci for each vertex and
placing each edge independently with probability:

pij =

{
ci cj
2m

for ı 6= j
c2
i

4m
for i = j

With this choice the average degree of vertex i is:

〈ki 〉 = 2pii +
∑
j 6=i

cicj
2m

=
∑
ji

cicj
2m

= ci .

In other words the parameters ci are just the expected degrees. Thus, in
this model we don’t have a fixed degree distribution and the degrees are
random variables. In fact one can show that the degree of vertex i will be
poisson distributed with mean ci . This variation in the degree sequence
distribution makes the model unsatisfactory for modelling networks.
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Evaluation

The Configuration Model consists a firm step towards modelling
real world networks as:

It can materialize any valid degree sequence both for directed
and undirected networks.

It exhibits the small world phenomenon.

With proper adjustments it can exhibit high degrees of
clustering.

It can be generalized to include any number of fixed
subgraphs and gives us great modelling capabilities.
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Evaluation

However, there are a number of unpleasant facts that makes it
unsatisfactory:

It allows multiedges and hyper-multiedges, which is unrealistic.

In order to make it a realistic we must to resort to overfitting,
specifying a number of parameter distributions (degree,
clustering, correlations).

It provides no insight in how these networks might have
actually formed through temporal evolution and its
mechanism has no real life counterpart.
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Preferential Attachment
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Preferential Attachment

Networks such as the Internet, citation networks are observed
to approximately follow power law degree distributions. The
power law is somewhat an unusual distribution and its
appearance is an indicator of an interesting underlying
process. How do these power laws appear?

Rich get Richer, Feedback, Preferential
Attachment

Preferential Attachment is a mechanism that gives an
advantage/bias to more prosperous nodes making them morel
likely to be selected in the future by other nodes.
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Origins

Price had studied in the 1960’s the citation network of
scientific papers and pointed the power law degree
distribution. In the 1970’s Price considered the question of
how these power laws appear and proposed a simple and
elegant model of network formation.

In 1999 Barabasi and Albert, unaware of Price’s work,
considered a similar mechanism and showed that it results in
power law distributions. They coined the mechanism as
Preferential Attachment.

Krapivsky and Redner in 2000, extended the Preferential
Attachment mechanism for non-linear kernels as well.
Subsequently Bianconi and Barabasi extended the mechanism
for non-uniform kernels where each node had a different
attractiveness.



Overview Network Metrics Configuration Model Preferential Attachment Exponential Random Graphs Discussion

Price’s Model

Price considered the citation network growth process. He
assumed that papers(nodes) are published continually and that
newly appearing papers cite(edges) previously existed ones.
Moreover:

Every paper sites on average c old
papers.

Each “old” paper is cited with
probability proportional to the
number of citations qi it already
has plus a constant a. Thus:

pi =
qi + a∑
i (qi + a

=
qi + a

n(c + a)
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Master Equation Approach

Each new paper cites c vertices on average, thus a vertex with degree q
receives on average c q+a

n(c+a)
new citations. There are npq(n) vertices with

degree q and they receive on average:

npq(n)× c
q + a

n(c + a)
=

c(q + a)

(c + a)
pq(n)

From the population of vertices with degree q we gain 1 for each vertex
of degree q − 1 that receives a new citation from the new node, and lose
1 for each vertex of degree q:

gain =
c(q − 1 + a)

(c + a)
pq−1(n) loss =

c(q + a)

(c + a)
pq(n)

Now we can write the master equation for the evolution of the in-degrees
as follows:

(n + 1)pq(n) = npq(n) +
c(q − 1 + a)

(c + a)
pq−1(n)− c(q + a)

(c + a)
pq(n)
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Solving the Recurrence

Now let us consider the limit of large network size and calculate the
asymptotic form of the degree distribution. Taking the limit n→∞ and
setting pq = pq(inf), we get the recurrence:

pq =
c

c + a
[(q − 1 + a)pq−1 − (q + a)pq] , p0 =

1 + a/c

a + 1 + a/c

If we solve for pq we get:

pq =
q + a− 1

q + a + 1 + a/c
pq−1 , p0 =

1 + a/c

a + 1 + a/c

If we recursively substitute the lower terms we have:

pq =
(q + a− 1)(q + a− 2) . . . a

(q + a + 1 + a/c)(a + 2 + a/c)

1 + a/c

a + 1 + a/c
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Asymptotics

Luckily, the solution for pq can be expressed in closed form due to the
properties of the Γ(x) and B(x , y) functions:

Γ(x + n)

Γ(x)
= (x + n − 1)(x + n − 2) . . . x , B(x , y) =

Γ(x)Γ(y)

Γ(x + y)

After some algebraic manipulations we have the solution in closed form:

pq =
B(q + a, 2 + a/c)

B(a, 1 + a/c)

If we use standard Stirling approximations for Γ(x) we derive asymptotic
approximations for B(x , y):

B(x , y) ' e−xxx− 1
2

e−(x+y)xx+y− 1
2 ey

= x−yΓ(y)
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Power Laws!

Applying the asymptotic calculation in the closed form
solution for the degree distribution we get:

pq ∼ (q + a)−α ∼ q−α

Where the exponent a is given by: α = 2 + a
c . Thus, Price’s

model give rise to power law distributions with exponent
between 2 < a <∞. Barabasi and Alberts’s model is just a
special case where a = c and results in a power law with
exponent 3.

Note also that the condition of Molloy and Reed implies that
there is a giant component if :

〈k2〉 − 2〈k〉 > 0⇒ ζ(α− 2) > 2ζ(α− 1)⇒ α < 3.4788
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Temporal Evolution

Intuitively Price’s model gives an advantage to vertices created
earlier, as they have more time to acquire links from other vertices. We
want to get a quantitative estimate for this fact. Let pq(t, n) be the
fraction of vertices created at time t that have in-degree q when the
network has n vertices. We can write the master equation:

(n+1)pq(t, n+1) = npq(t, n)+
c

c + a
[(q−1+a)pq−1(t, n)−(q+a)pq(t, n)].

Because at each time t only one vertex is created, it would make more
sense to change to a rescaled time: τ = t

n
. In the same time we also

change the density from pq(t, n) to πq(τ, n) = npq(t, n), the fraction of
vertices with degree q created at times form τ to τ + dτ . The master
equation becomes for n→∞, ε = 1/n:

πq(τ)− πq(τ − ετ)

ε
+

c

c + a
[(q − 1 + a)πq−1(τ)− (q + a)πq(τ)] = 0

As n→∞, ε→ 0 the master equation becomes a differential equation:

τ
dπq

dτ
+

c

c + a
[(q − 1 + a)πq−1(τ)− (q + a)πq(τ)] = 0
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Temporal Evolution

If we solve for lower degrees to higher starting from π0(τ), we get that:

πq(τ) =
Γ(q + a)

Γ(q + 1)Γ(a)
τ ca/(c+a)(1− τ ca/(c+a))q

For large q we have that πq(τ) decays exponentially except for a leading
algebraic factor:

πq(τ) ∼ qa−1(1− τ ca/(c+a))q
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First Mover Advantage

We see that vertices added to the network early have a
significant advantage over those added later. In the setting of
citations this suggest that early papers in a field will receive
substantially more citations than later ones, purely because
they were published first.

This is the fundamental feedback mechanism that appears
in many situations. A small initial lead is amplified by
preferential attachment process and turns into a significant
advantage.

However, this is a crude model as it ignores the quality of
individual papers as well as the “hotness” of a field. We thus
need to generalize the PA model, to more complex
attachment kernels.



Overview Network Metrics Configuration Model Preferential Attachment Exponential Random Graphs Discussion

Non-Linear PA

Studies of real world networks have shown that the growth rate isn’t
exactly linear. Rather it has been found that it follows a power law:
ak = kγ with varying exponents γ. For γ = 1 we have linear preferential
attachment as before. These are data from Measuring Preferential
Attachment for evolving networks, Jeong et. al.

What effect would a non-linear preferential attachment have on the
degree distribution of a network? Let ak be the functional form of the
kernel. Then the correct normalized probability would be:

Π(k) =
ak∑
i aki
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Non-Linear PA

Let µ(n) = 1
n

∑
i aki =

∑
k akpk(n) then we can write the

master equation as before:

(n + 1)pk(n + 1) = npk(n) +
c

µ(n)
[ak−1pk−1(n)− akpk(n)].

Taking the limit for n→∞ and writing
pk = pk(∞), µ = µ(∞), we have :

pk =
c

µ
[ak−1pk−1 − akpk ], pc =

µ/c

ac + µ/c

If we solve the recurrence we get that:

pk =
µ

cak

k∏
r=c

[
1 +

µ

car

]−1
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Power Law Kernel

If we consider the power law form of the attachment kernel where
ak = kγ and use asymptotic analysis we find that:

In the sublinear regime, where γ < 1 a power law degree
distribution with exponential cutoff occurs.

pk = k−γexp [−f (µ, γ)]

In the linear case for γ = 1, we have a tunable exponent
power law degree distribution, as describes previously.

In the super-linear regime γ > 1, a condensation to gel-like
state occurs, where a “winner takes all” phenomenon occurs
and a single node is connected to allmost all nodes in the
network and the power law disappears.
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Fitness Models

One property of the PA models so far is the conservation of hubs over
time. In this setting a latecomer node will have a significant disadvantage
in obtaining a high degree. However in real world networks some new
nodes may surpass older nodes due to their internal fitness.

Bianconi and Barabasi in 2001 proposed a model that assigns to every
node i inserted in the network a fitness ηi drawn from a distribution ρ(η).
The probability that a newly formed node will connect to an existing node
j is :

Πi =
ηjkj∑
` η`k`

Writing again the master equation and taking the limit n→∞, we get:

pk(η) =
c

µ
[ak−1(η)pk−1(η)− ak(η)pk(η)]
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Degree Distribution

Using the form we derived for non-linear PA with the
attachment kernel ak(η) = η · k and the initial condition

pc(η) = ρ(η)− cac (η)
µ pc(η), we get that:

pk(η) = ρ(η)
B(k , 1 + µ/cη)

B(c , µ/cη)
∼ ρ(η)k1+ µ

cη

We have shown that the distribution of degrees of vertices
with a particular value of fitness follows a power law, but
what about the overall distribution? Let us first calculate the
mean degree 〈k〉:

〈k〉 =

∫ ∞
0

∞∑
k=c

kpk(η)dη = c

∫ ∞
0

ρ(η)dη

1− cη/µ
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Condensation

Bianconi and Barabasi solved the model utilizing a mapping from networks to
Bose-Einstein gases. For each node they introduced an energy level and for
each edge they introduce 2 particles in the system. The degrees in the original
network are equivalent to the number of particles at each energy level. They
found that:

(a) When all the fitness values are the
same we have the scale free phase
and we have pure power law.

(b) If we have and arbitrary fitness
distribution, the high fitness
nodes become the hubs. This is
the Fit-Get-Richer phase.

(c) If
∫ η0

0
ρ(η)dη

1−cη/µ
< 2 then we have

“condensation” where one or
more vertices accumulate a finite
fraction of the edges.
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Preferential Attachment Network

Figure: Scale-free network generated by Barabasi-Albert Model. From
NetLogo
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Other Results

[Bollobas, Riordan ’00]

BA model(τ = 3) diameter is Θ(log(N)) if c = 1, and Θ( log(N)
log(log(N))

).

[Flaxman, Frieze, Vera ’06’08]
Geometric Preferential Attachment on a sphere in R3.

[Souza, Borgs, Chayes, Berger, R.Kleinberg ’06]
Emergence of Preferential Attachment from optimization.

[Borgs, Chayes, Daskalakis, Roch STOC’07]
Rigorous analysis of PA with Fitness via Generalized Polya Urn model.
Confirmed Bianconi-Barabasi predictions and obtained analytic results.

[Fronczak, Fronczak, Holyst ’08] Clustering in BA model is roughly:

C(t) = (c−1)log(t)2

8t

[Dommers, Van der Hoefstadt, Hooghiemstra ’09]
Diameter is Θ(log(t)) for τ > 3 and O(log(log(t))) for network with
2 < τ < 3.



Overview Network Metrics Configuration Model Preferential Attachment Exponential Random Graphs Discussion

Evaluation

The Preferential Attachment models are quite adequate as
models of real world networks, since:

o Power law degree distribution emerge quite naturally.

o They are small worlds with distances scaling as log(n) for α > 3 and as
log log(n) for α ∈ (2, 3).

o Provide intuition in the generative process of the network.

o Exhibit robustness/resilience in random failures/attacks.

There are also many extensions of these models, for instance one can
remove randomly edges, rewire edges or even remove nodes. Surprisingly,
many of these cases can be examined analytically through the formalism
of generative functions.

Although, these models don’t exhibit high degree of clustering they are
up to now the most widely accepted models for Networks and are used
extensively in modelling Social Networks, the Web and in Biological
settings.
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Exponential Random Graphs
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Ensembles

Many of the networks we study exist in only one instantiation
and if their growth process repeated they wouldn’t be exactly
the same. We are interested not in the exact structure but in
the qualitative properties of classes of networks, such us
Social Networks, the Internet or Biological Networks.

We would also want to see how processes such as searching,
routing behave not on case-specific instantiations but on a
general class of networks.

These considerations have driven us to consider ensemble models
of networks satisfying some desired properties, meaning a set of
possible networks(instantiations) and a probability distribution over
them. For this purpose we will use the exponential random
graphs formalism.
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Exponential Random Graphs

In the exponential random graphs formalism we consider a set of
possible graphs G for which:

We fix the average values of some quantities xi , e.g degree
distribution or number of edges.

We additionally require that we have a valid probability
distribution P(G) over the space of graphs we defined

This problem is under-determined so we need to maximize a
criterion. The most natural criterion is the “Gibbs entropy”. Now
we are ready to write down the formulation:

max S = −
∑
G∈G

P(G )lnP(G ),

s.t
∑
G∈G

P(G ) = 1∑
G∈G

P(G )xi (G ), i = 1, . . .
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Lagrangian Formulation

We will solve the optimization problem using the Langrangian
Multiplier method, for which we introduce a multiplier for each
constraint we must satisfy. If we execute the method we get:

P(G ) = exp

[
a− 1 +

∑
i

βixi (G )

]
Hence the name Exponential Random Graphs. If we set:

Z = e1−a, H(G ) =
∑
i

βixi (G )⇒ Z =
∑
G∈G

eH(G)

where Z is called the partition function and H(G ) the graph
Hamiltonian.

What remains is to find the values for Z and βi . These are
effectively the parameters of the model and play similar role as
p for the Poisson random graph.
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Mean Quantities

Once we have the probability distribution P(G ) we can use it
calculate estimates of quantities of interest. We are usually
interested in mean quantities:

〈y〉 =
∑
G∈G

P(G )y(G ) =
1

Z

∑
G∈G

eH(G)y(G )

We could use this relations for the actual quantities 〈xi 〉 we
want to fix, in order to calculate the unknown quantities βi :

〈xi 〉 =
1

Z

∑
G∈G

e
∑

i βixi (G)xi (G ) =
1

Z

∂Z

∂βi
=
∂F

∂βi

where F = lnZ is called the free energy of the ensemble.
Thus, we only need to calculate Z .
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Erdos-Renyi Graphs Revisited

Suppose we want a random graph with fixed average number of edges 〈m〉.
Then with the exponential random graph formalism we would have:

H = βm, Z =
∑
G

eβm.

How can we evaluate the sum over all possible graphs. The standard way to
achieve this is to sum over possible values of the adjacency matrix Aij , which
will be for simple graphs only 0 and 1. Now if we also write m =

∑
i<j Aij we

get:

Z =
∑
{Aij}

∏
i<j

eβAij =
∏
i<j

(1 + eβ) =
[
1 + eβ

](n2)
Now using the free energy F = lnZ =

(
n
2

)
ln(1 + eβ) we find that the model is

equivalent to Gn,p:

〈m〉 =
∂F

∂β
=

(
n

2

)
1

1 + e−β
⇒ β =

〈m〉(
n
2

)
− 〈m〉

pij = 〈Aij〉 =

∑
Aij=0,1 Aije

βAij∑
Aij=0,1 eβAij

=
1

1 + e−β
=
〈m〉(
n
2

)
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Fixed Expected Degree Sequence

A natural question is whether we can have an exponential random
graph model that has any expected degree sequence. In this model
we fix the expected degrees of each vertex. Specifically:

H =
∑
i

βiki , ki =
∑
j

Aij ⇒ H =
∑
ij

βiAij =
∑
i<j

(βi + βj)Aij

since we consider symmetric graphs. The partition function now
can be written:

Z =
∑
{Aij}

exp

∑
i<j

(βi + βj)Aij

 =
∏
i<j

[
1 + eβi+βj

]
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Configuration Model Revisited

We calculate again the probability of an edge between i and j :

pij =

∑
Aij=0,1 Aije

(βi+βj )Aij∑
Aij=0,1 e(βi+βj )Aij

=
1

1 + e−(βi+βj )

Observe that now the edges have different probabilities. Generally
we are interested in sparse networks where the probability of any
individual edge is small. Thus:

pij ' eβi eβj ⇒ 〈ki 〉 =
∑
k

pik = eβi
∑
k

eβk =
eβi

C

If we then sum all the expected degrees
∑

i 〈ki 〉 = 2〈m〉 we get the
Configuration Model variant we discussed:

pij =
〈ki 〉〈kj〉

2〈m〉
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Evaluation

The Exponential Random Graph approach is quite general and natural, however
there are some serious difficulties:

It is very difficult to solve analytically the model even when second or
third order constraints are present, e.g triangles, and even if it is possible
to have a solution usually we can’t create graphs for the full range of the
parameters, e.g. transitivity.

Even if we can’t solve it one could argue that we could use MCMC
methods and sample from the probability distribution they define.
Unfortunately, recently Bhamidi et.al. (FOCS 2008) have shown that
either the markov chain sampling from the distribution needs
exponentially many steps(low temperature) or it mixes really fast(high
temperature) but then any finite collection of edges are asymptotically
independent making them not really different from Erdos-Renyi graphs.

These results, especially the second, make the use of exponential random

graphs extremely limited in the case where analytic results can be found and

thus inadequate for modelling as well as simulation purposes.
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Other Models

Figure: Lattice Embedded Graphs Figure: Geometric Random Graphs

Figure: Network Optimization Models
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Discussion
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New Frontiers

Since the mid 90’s explosion in scientific interest for networks we have come a
long way. However, there are still many aspects that are only partially
investigated:

Incorporate Geometry and other “constraints”

Goal Driven Models and Network Formation Games

Average case analysis of algorithms and processes

It is a challenge to utilize the knowledge and intuition gained from the study of
networks to:

Design more efficient protocols and procedures(routing, voting,
marketing).

Proactive and intelligent legislation.

Educate decision-makers to incorporate the underlying network effects in
their reasoning.
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Harnessing Randomness

Exploring Structure

Random Graphs and Satisfiability

PageRank and WebSearch

Metric Embeddings (Johnson-Lindenstrauss and Achlioptas)

Linear Predictive Coding

Exploiting Structure

Randomized Algorithms(Optimization)

Simulated Annealing

Exploring + Exploiting → Evolution
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Handling Complexity
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Handling Complexity
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Questions?

Thank You!
psiminelakis@gmail.com

“The point isn’t that any oversimplified model will do, but that
oversimplified models can go a long way if they get right the few
details that really matter. All good science depends on the fact
that the important patterns rarely depend sensitively on thousands
of factors, but on a crucial few.”

Mark Buchanan 2007, The Social Atom.
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